
13 February 2026

Prepared for
Rujira

Prepared by
ret2basic.eth
y4y
FailSafe

Rujira Fin
Smart Contract Audit Report

Rujira Fin: Smart Contract Audit Report 13 February 2026

Table of Contents

Executive Summary 2

Project Details 3
Structure & Organization of The Security Report . 3

Methodology 4
In‑scope . 6

Summary of Findings 7
Finding 1: Oracle(‑10000) Zero‑Rate Pool Enables Direct Theft of Swap User Funds 8
Finding 2: Unauthorized Range Transfer via Arb/DoRange Sender Spoofing 13
Finding 3: MarketMaker commit() Fee Deduction Creates Impossible BOWmin_return 15
Finding 4: bid_pool::distribute_full Consumed‑Offer Exceeds Passed Offer — Swapper Underflow DoS . . 17
Finding 5: LP sandwich on RangeMsg::Createdue to lack of slippage control 21
Finding 6: MarketMaker Netting Underflow Causes DoS . 22
Finding 7: Tick Change Strands Fixed‑Price Orders, Locking User Funds 24
Finding 8: Unbounded Orderbook Iteration Can Cause DoS . 27
Finding 9: Recursive RangeOfferIter Can DoS with Many Empty Ranges 29
Finding 10: Range Iterator Infinite Loop When range_delta == 0 . 31

Disclaimer 33

1

Rujira Fin: Smart Contract Audit Report 13 February 2026

Executive Summary

FailSafe was engaged by Rujira Fin to conduct a smart contract audit on its THORChain blockchain implementa‑
tion. Our elite team of security experts delved deeply into the intricacies of the smart contracts to provide a com‑
prehensive security review. The audit process wasmeticulous, leveraging both automated tools andmanual code
analysis to identify potential vulnerabilities. Our objective was to ensure the integrity, security, and reliability of
Rujira Fin’s smart contracts, and to provide actionable recommendations to enhance their security posture.

During the audit, we identified several critical vulnerabilities that could have had significant implications if left un‑
addressed. Themost severe findings involved the potential for direct fund theft throughmanipulation of zero‑rate
pools and unauthorized range transfers via spoofing. These vulnerabilities could have allowed attackers to steal
assets directly from users or manipulatemarket conditions to their advantage. Additionally, we discovered issues
related to market operations that could lead to denial of service, such as underflows and unbounded iterations.
These findings highlight the importance of rigorous input validation and robust transaction handling to prevent
exploitation by malicious actors.

We commend the Rujira Fin development team for their proactive approach and dedication to security. Their swift
response to our findings and commitment to resolving critical vulnerabilities demonstrate a strong commitment
to safeguarding user funds and maintaining the integrity of their platform. By addressing these concerns and im‑
plementing our recommendations, Rujira Fin has significantly strengthened its security posture. We encourage
the team to continue their diligent efforts in maintaining a secure and resilient blockchain environment, ensuring
trust and confidence among their users.

2

Rujira Fin: Smart Contract Audit Report 13 February 2026

Project Details

Project Rujira Fin
Website https://rujira.network/
Repository https://gitlab.com/thorchain/rujira/‑/tree/fin/v1.2/contracts/rujira‑fin?ref_type=heads
Blockchain THORChain
Audit Type Smart Contract Audit Report
Initial Commit 9e78fabab7d5441743af3e925074beb79912be86
Final Commit TBD
Timeline 29 January 2026 ‑ 13 February 2026

Final Report: 13 February 2026

Structure & Organization of The Security Report

Issues are tagged as “Open”, “Acknowledged”, “Partially Resolved”, “Resolved” or “Closed” depending onwhether
they have been fixed or addressed.

• Open: The issue has been reported and is awaiting remediation from developer team.

• Acknowledged: The developer team has reviewed and accepted the issue but has decided not to fix it.

• Partially Resolved: Mitigations have been applied, yet some risks or gaps still remain.

• Resolved: The issue has been fully addressed and no further work is necessary.

• Closed: The issue is deemed no longer pertinent or actionable.

Furthermore, the severity of each issue is written as assessed by the risk of exploitation or other unexpected or
otherwise unsafe behavior:

Critical The issue affects the platform in such a way that funds may be lost, allocated incorrectly, or other‑
wise result in a significant loss.

High The issue affects the ability of the platform to compile or operate in a significant way.
Medium The issue affects the ability of the platform to operate in a way that doesn’t significantly hinder its

behavior.
Low The issue has minimal impact on the platform’s ability to operate.
Info The issue is informational in nature and does not pose any direct risk to the platform’s operation.

3

https://rujira.network/
https://gitlab.com/thorchain/rujira/-/tree/fin/v1.2/contracts/rujira-fin?ref_type=heads

Rujira Fin: Smart Contract Audit Report 13 February 2026

Methodology

Threat Modelling

Wewill employ a threatmodelling approach to identify potential attack vectors and risks associatedwith the smart
contract(s). This involves:

1. Asset Identification: Enumerating the critical assets within the smart contract(s), such as tokens, sensitive
data, access controls, andmore.

2. Threat Enumeration: Identifying potential threats such as reentrancy, integer overflow/underflow, denial of
service, andmore.

3. Vulnerability Assessment: Assessing vulnerabilities in the context of the smart contract(s) and its interaction
with external components.

4. Risk Prioritization: Prioritizing identified threats based on their severity and potential impact.

Manual Code Review

Our manual analysis involves an in‑depth review of the smart contract(s) source code, focusing on:

1. Code Review Line‑by‑line examination to detect vulnerabilities and ensure compliance with best practices.

2. Logic Analysis: Analyzing the smart contract(s) Business logic for vulnerabilities and inconsistencies.

3. Gas Optimization: Identifying areas for gas optimization and efficiency improvements.

4. Access Control Review: Ensuring proper access controls and permission management.

5. External Dependencies: Assessing the security implications of external dependencies or oracles.

Functional Testing in Hardhat/Foundry

We will perform functional testing using Hardhat/Foundry to ensure the correctness and reliability of the smart
contract(s). This includes:

1. Functional Testing: Writing comprehensive tests to cover various functionalities and edge cases.

2. Integration Testing: Verifying the interaction of smart contract(s) with other components.

3. Deployment Verification: Ensuring the correctness of smart contract(s) deployment.

Fuzzing and Invariant Testing

If deemednecessarybasedon thecomplexity andcriticalityof the smart contract(s),wewill perform fuzzingand in‑
variant testing to identify vulnerabilities thatmight not be caught through conventionalmethods. This includes:

4

Rujira Fin: Smart Contract Audit Report 13 February 2026

1. Fuzz Testing: Employing fuzzing techniques to generate invalid, unexpected, or random inputs to trigger
potential vulnerabilities.

2. Invariant Testing: Verifying invariants and properties to ensure the correctness and consistency of the smart
contract(s) across various scenarios.

Edge Cases Scenarios Coverage

Our audit will thoroughly cover a wide spectrum of edge cases, including but not limited to:

1. Extreme Inputs: Testing with extreme and boundary inputs to assess resilience.

2. Exception Handling: Evaluating how the contract(s) handle exceptional scenarios.

3. Concurrency: Assessing the contract(s) behaviour in concurrent or simultaneous interactions.

4. Non‑Standard Scenarios: Analyzing non‑standard use cases that might impact contract(s) behaviour.

Reporting and Recommendations

A thorough description of the issue, highlighting the potential impact on the system.

1. The location within the codebase where the issue is found.

2. A clear explanation of the vulnerability, its root cause, and its potential exploitation.

3. Code snippets or detailed instructions on how to address the vulnerability.

4. Best practices and coding guidelines to prevent similar issues in the future.

5. We will suggest improvements in the overall system architecture or design, if relevant.

6. Wherever applicable, we’ll include a PoC to demonstrate issue severity, aiding effective mitigation.

Report Generation

1. Document all findings, including identified vulnerabilities, their severity, and potential impact.

2. Provide clear and actionable recommendations for addressing security issues.

Remediation Support

1. Collaborate with the project’s development team to address and remediate identified vulnerabilities.

2. Review and validate code changes and security fixes.

Final Assessment

Re‑evaluate the project’s security posture after remediation efforts to ensure vulnerabilities have been adequately
addressed.

5

Rujira Fin: Smart Contract Audit Report 13 February 2026

In‑scope

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/ranges/range.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/contract.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/order_pool/pool.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/order_pool/order_manager.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/ranges/scl.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/ranges/iter.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/ranges/execute.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/order_pool/order.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/ranges/tests.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/market_maker/context.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/config.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/ranges/range_offer.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/order_pool/pool_key.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/market_maker/iter.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/testing/xyk.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/ranges/events.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/ranges/context.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/market_maker/offer.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/swap_iter.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/error.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/market_maker/tests.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/order_pool/query.rs

• rujira‑fin‑v1.2‑contracts‑rujira‑fin/contracts/rujira‑fin/src/order_pool/execute.rs

6

Rujira Fin: Smart Contract Audit Report 13 February 2026

Summary of Findings

Severity Total Open Acknowledged Partially Resolved Resolved

Critical 2 ‑ ‑ ‑ 2

High 1 ‑ 1 ‑ ‑

Medium 5 ‑ 1 ‑ 4

Low 1 ‑ 1 ‑ ‑

Info 1 ‑ ‑ ‑ 1

Total 10 0 3 0 7

Findings Severity Status

1 Oracle(‑10000) Zero‑Rate Pool Enables Direct Theft of Swap User Funds Critical Resolved

2 Unauthorized Range Transfer via Arb/DoRange Sender Spoofing Critical Resolved

3 MarketMaker commit() Fee Deduction Creates Impossible BOW
min_return

High Acknowledged

4 bid_pool::distribute_full Consumed‑Offer Exceeds Passed Offer —
Swapper Underflow DoS

Medium Resolved

5 LP sandwich on ‘RangeMsg::Create‘ due to lack of slippage control Medium Resolved

6 MarketMaker Netting Underflow Causes DoS Medium Resolved

7 Tick Change Strands Fixed‑Price Orders, Locking User Funds Medium Resolved

8 Unbounded Orderbook Iteration Can Cause DoS Medium Acknowledged

9 Recursive RangeOfferIter Can DoS with Many Empty Ranges Low Acknowledged

10 Range Iterator Infinite Loop When range_delta == 0 Info Resolved

7

Rujira Fin: Smart Contract Audit Report 13 February 2026

Finding 1: Oracle(‑10000) Zero‑Rate Pool Enables Direct Theft of Swap User Funds

Severity: Critical

Status: Resolved

Description:

Premiumable::adjustmaps bps == -10000 to a ratemultiplier of exactly zero. An attacker can exploit the Quote‑
side order creation path—which does not call inv() and therefore does not panic— to store a persistent poolwith
rate = 0 in contract state. This pool then silently absorbs subsequent swap users’ offer tokens for zero return,
allowing the attacker to claim those stolen tokens while keeping their original deposit intact.

Root Cause

Premiumable::adjust in packages/rujira-rs/src/premium.rs:

1 i16::MIN..=-1 => self * Decimal::from_ratio(10000u16 - bps.unsigned_abs(), 10000u16)

For bps == -10000: numerator = 10000 - 10000 = 0 → rate = oracle * 0 = 0.

For bps < -10000: overflow‑checks are enabled in release profile (Cargo.toml), so the u16 subtraction panics —
only bps == -10000 reaches the zero‑rate path without reverting.

The Quote‑Side Asymmetry (Why Order Creation Succeeds)

In execute_new_order (order_manager.rs):

1 let opposite = side.other();
2 let mut swapper = Swapper::new(
3 ...,
4 SwapRequest::Limit {
5 price: match opposite {
6 Side::Base => pool.rate(), // ← used when side == Quote
7 Side::Quote => pool.rate().inv().unwrap(), // ← used when side == Base
8 },
9 ...

10 },
11 ...
12);

• Side::Base path: opposite = Quote→ calls pool.rate().inv().unwrap()→ rate is 0 → inv() returns None
→ .unwrap() panics → tx reverts → order NOT stored.

• Side::Quote path: opposite = Base → calls pool.rate() directly → returns 0 → no panic. The swapper
runs with limit = 0, immediately breaks on all Base‑side pools (achieved > 0 = limit), and returns with
consumed_offer = 0, remaining_offer = target. Then pool.create_order(storage, ..., target)
stores the order. The rate‑0 pool is now persistently in state.

8

Rujira Fin: Smart Contract Audit Report 13 February 2026

How the Stored Rate‑0 Pool Steals Funds During Swaps

Whenanyuser swapsby sendingbase tokens (→side = Side::Quote), Pool::iter includes the stored rate‑0pool.
In Pool::swap (SwapItem impl, pool.rs):

1 let rate = match self.side {
2 Side::Base => self.rate.inv().unwrap(),
3 Side::Quote => self.rate, // ← 0, no inv(), no panic
4 };
5 let res = self.pool.distribute(offer.into(), &Decimal256::from(rate))?;

distribute(remaining_offer, rate=0) calls distribute_partial(bids_value=0, offer):

• consumed_offer = offer → victim’s entire remaining offer consumed

• consumed_bids = 0 → attacker’s bid untouched

• ratio = 1 - 0/total = 1 → pool product unchanged, attacker’s bid amount stays the same

• Pool sum updated with offer / total → attacker’s filled amount increases by victim’s tokens

Back in Swapper::swap (swapper.rs):

1 if let SwapRequest::Limit { price: limit, .. } = self.req {
2 if !bids.is_zero() { // bids == 0 → SKIPPED
3 ...
4 }
5 }
6 self.context = next_context; // COMMITTED

The !bids.is_zero() guard skips the limit‑price check whenever bids is zero. For Yolo/Min requests, there is no
per‑step guard at all. The step is unconditionally committed.

After the loop, SwapRequest::Yolo performs no return check. SwapRequest::Min only reverts if returned <
min_return — but if legitimate pools already filled enough to meet the minimum, the rate‑0 theft goes through
silently.

Attacker Recovery

The attacker sends a subsequent Order message targeting the same (Side::Quote, Price::Oracle(-10000))
pool:

1. maybe_withdraw → pool.claim_order claims filled tokens → returned in ask denom (base tokens). These
are the victim’s stolen tokens.

2. Retract to target = 0 → pool.retract_order returns the attacker’s original quote tokens, since
consumed_bids = 0 during the theft.

9

Rujira Fin: Smart Contract Audit Report 13 February 2026

Net result: attacker keeps their quote tokens AND gains the victim’s base tokens.

Impact:

• Direct fund theft: attacker steals base tokens from every swap user whose transaction reaches the rate‑0
pool.

• Persistent: the pool stays in state indefinitely, affecting all future Side::Quote swaps until governance in‑
tervention.

• No special privileges required: any user can create the malicious order.

• Yolo swaps fully exploitable: no return check protects the victim.

• Min swapspartially exploitable: theft succeedswhenever themin_return ismet by earlier legitimatepools.

Proof of Concept:

Step 1 — Attacker plants the rate‑0 pool

1 // Attacker sends 1_000_000 quote tokens alongside:
2 ExecuteMsg::Order((
3 vec![
4 (
5 Side::Quote, // ← Quote side, NOT Base
6 Price::Oracle(-10000), // ← rate = oracle * 0 = 0
7 Some(Uint128::from(1_000_000u128)),
8),
9],

10 None,
11))

Execution trace (succeeds, no panic):

1 ExecuteMsg::Order
2 → Arb { then: DoOrder }
3 → DoOrder
4 → execute_orders
5 → Pool::load(Price::Oracle(-10000), Side::Quote, oracle)
6 → price.to_rate(oracle) = 0
7 → execute_new_order(side=Quote)
8 → opposite = Base
9 → limit price = pool.rate() = 0 (no inv(), so won't revert)

10 → Swapper runs, breaks immediately on all Base pools
11 → swap result: consumed=0, remaining=1_000_000
12 → pool.create_order(storage, ..., 1_000_000) // STORED IN STATE

Result: pool at (Side::Quote, PoolType::Oracle, Price::Oracle(-10000)) with total = 1_000_000 and
rate = 0 is now in POOLS + BID_POOLS.

Step 2— Victim swaps (sends base tokens)

1 // Victim sends 500 base tokens alongside:
2 ExecuteMsg::Swap(SwapRequest::Yolo {
3 to: None,
4 callback: None,
5 })

10

Rujira Fin: Smart Contract Audit Report 13 February 2026

Execution trace:

1 ExecuteMsg::Swap → Arb { then: DoSwap }
2 → DoSwap → execute_swap
3 → side = Side::Quote (ask_side of base token)
4 → Pool::iter(storage, Side::Quote, oracle)
5 → [... legitimate pools ...] [rate-0 pool at end]
6 → Swapper iterates:
7 → <legitimate pools fill some or all of the offer>
8 → rate-0 pool hit with remaining_offer:
9 → Pool::swap: rate = 0 (Side::Quote, no inv())

10 → distribute(remaining_offer, 0)
11 → distribute_partial(bids_value=0, remaining_offer)
12 → consumed_offer = remaining_offer ← ALL CONSUMED
13 → consumed_bids = 0 ← NOTHING RETURNED
14 → Swapper: bids=0, limit check SKIPPED, step COMMITTED
15 → remaining_offer = 0, returned += 0
16 → Yolo: no return check → Ok
17 → Victim receives 0 for the stolen portion

Step 3— Attacker extracts stolen funds

1 // Attacker resubmits with target = 0 to claim + retract:
2 ExecuteMsg::Order((
3 vec![
4 (
5 Side::Quote,
6 Price::Oracle(-10000),
7 Some(Uint128::from(0u128)), // retract all
8),
9],

10 None,
11))

1 →
2 execute_existing_order
3 → maybe_withdraw: bid.filled > 0 → claims victim's base tokens
4 → retract to target=0: returns 1_000_000 quote tokens (bid was never consumed)

Attacker wallet after: 1,000,000 quote tokens + victim’s base tokens.

Numeric Example

Actor Before Action After

Attacker 1M USDC Order(Quote,
Oracle(‑10000), 1M)

0 USDC (in pool)

Victim 500 BTC Swap(Yolo), sends 500
BTC

0 BTC (stolen)

Attacker — Order(Quote,
Oracle(‑10000), 0)

1M USDC + 500 BTC

Remediation:

11

Rujira Fin: Smart Contract Audit Report 13 February 2026

1. Reject bps <= -10000 in OrderManager::execute_orders (or in Price::to_rate) before thepool is loaded.

2. Guard distribute_partial against bids_value == 0: return Ok(DistributionResult::default())
when rate produces zero bids — zero‑rate distributions should never consume offer.

3. Guard Swapper::swap against zero‑bids steps: skip/errorwhen bids == 0 && offer > 0 insteadof silently
committing.

4. Defense‑in‑depth: replace inv().unwrap()with checked error handling in all execution paths.

Discussion:

Developer:

Hey, we’ve taken care of the issue you pointed out. You can check out the fix wemade by heading over to this
commit: e9beff4a1c2a12eac3eca9df62014861b1e25370 on our GitLab. We hope this resolves everything on
your end!

Fix URL: https://gitlab.com/thorchain/rujira/‑/commit/e9beff4a1c2a12eac3eca9df62014861b1e25370

Auditor:

Great to hear you guys were on top of it! We’ll review the changes in the commit you mentioned. Thanks for
the quick turnaround, and we’ll get back to you if we have any more questions or need further adjustments.

12

https://gitlab.com/thorchain/rujira/-/commit/e9beff4a1c2a12eac3eca9df62014861b1e25370

Rujira Fin: Smart Contract Audit Report 13 February 2026

Finding 2: Unauthorized Range Transfer via Arb/DoRange Sender Spoofing

Severity: Critical

Status: Resolved

Description:

TheExecuteMsg::Arbentrypoint accepts anarbitrarythenmessage. Internal handlers (DoRange, DoOrder, DoSwap
) only check that the caller is the contract itself and then trust the embedded sender/recipient. This allows spoof‑
ing of user identity for internal actions, enabling direct theft via ranges and unauthorized order management.

In execute (contract entry), the DoRange branch only enforces info.sender == env.contract.address.

• The RangeMsg::Transfer path in execute_range checks sender == range.owner.

• Because sender is passed as a parameter rather than derived from info.sender, a user can call ExecuteMsg
::Arb { then: Some(DoRange((victim, RangeMsg::Transfer{ idx, to }))) }.

• ExecuteMsg::Arb does not authenticate the thenmessage against the original caller, so the spoofed sender
passes the ownership check.

The sameunauthenticated thenmechanismapplies to DoOrder((recipient, ...)), allowing arbitrarymodifica‑
tion/retraction of another user’s orders.

Impact:

Attackers can steal ownership of arbitrary ranges and then withdraw/close/claim to drain assets (critical theft).
They can also cancel or resize other users’ orders (griefing/market manipulation).

Source:

rujira‑fin‑v1.2/contrats/rujira‑fin/src/contract.rs, execute() rujira‑fin‑v1.2/contrats/rujira‑
fin/src/ranges/execute.rs, execute_range()

Proof of Concept:

1. Assume a victim owns range idx = 7.

2. Attacker submits ExecuteMsg::Arbwith a crafted thenmessage:

1 ExecuteMsg::Arb {
2 then: Some(to_json_binary(&ExecuteMsg::DoRange((
3 victim_addr,
4 RangeMsg::Transfer { idx: 7u128.into(), to: attacker_addr.to_string() }
5)))?)
6 }

13

Rujira Fin: Smart Contract Audit Report 13 February 2026

1. The contract validates only that info.sender is the contract itself and then trusts the embedded
victim_addr.

2. RangeMsg::Transfer succeeds because sender == range.owner, and ownership moves to the attacker.

Remediation:

Remove the embedded sender/recipient parameters from internal handlers and derive ownership checks from
the original caller. Alternatively, store and verify the authenticated original sender inside Arb and reject any mis‑
matched internal call.

Discussion:

Developer:

Hey, thanks for catching that issue! We’ve gone ahead and addressed it, and the fix has been rolled out to
production. You can check out the changes here: https://gitlab.com/thorchain/rujira/‑/commit/6a02edb2
5c9df83c550cceb7158466c6009a54d1. Appreciate the help!

Fix URL: https://gitlab.com/thorchain/rujira/‑/commit/6a02edb25c9df83c550cceb7158466c6009a54d1

Auditor:

We’re glad to see that you took quick action on the issue we identified. It’s great to know the mitigation is
already in production. We’ll review the fix at the provided link to ensure everything is secure. Thanks for your
prompt response!

14

https://gitlab.com/thorchain/rujira/-/commit/6a02edb25c9df83c550cceb7158466c6009a54d1
https://gitlab.com/thorchain/rujira/-/commit/6a02edb25c9df83c550cceb7158466c6009a54d1
https://gitlab.com/thorchain/rujira/-/commit/6a02edb25c9df83c550cceb7158466c6009a54d1

Rujira Fin: Smart Contract Audit Report 13 February 2026

Finding 3: MarketMaker commit() Fee Deduction Creates Impossible BOWmin_return

Severity: High

Status: Acknowledged

Description:

In MarketMakerContext::commit(), the AMM fee is deducted from the offer tokens before sending them to the
BOW contract, but min_return is set to the original unmodified ask amount. Because market maker prices are
derived directly from BOW’s own Quote query (which already embeds BOW’s internal fee), there is zero margin to
absorb the additional fee_amm deduction. BOW receives fewer input tokens butmustmeet the unchanged output
target, causing every BOW swap to revert when fee_amm > 0.

Market maker offer prices originate from bow::QueryMsg::Quote, which computes an XYK swap and deducts
BOW’s own fee before returning the price. MarketMakerIter::query_next() (iter.rs) stores this price directly
as MarketMakerOffer::price. When takers fill against the offer, MarketMakerOffer::swap() (offer.rs) uses that
price to compute the (offer, ask) pair committed to the shared context. The ask therefore represents exactly
what BOW should return for the full offer.

In context.rs, the commit() function:

1. Iterates compiled (offer, ask) pairs produced by compile()

2. Deducts fee_amm from offer:

1 let offer_fee = coin(
2 offer.amount.multiply_ratio(fee.numerator(), fee.denominator()).u128(),
3 offer.denom.clone(),
4);
5 let offer = coin(offer.amount.sub(offer_fee.amount).u128(), offer.denom);

3. Sends the reduced offer to BOW but keeps ask (the original pre‑fee amount) as min_return:

1 messages.push(CosmosMsg::Wasm(WasmMsg::Execute {
2 contract_addr: addr.to_string(),
3 msg: to_json_binary(&bow::ExecuteMsg::Swap {
4 min_return: ask.clone(), // <-- NOT adjusted for fee
5 ...
6 })?,
7 funds: vec![offer.clone()], // <-- reduced by fee
8 }));

The existing test test_market_maker_commit_fee in tests.rs confirms:

• Two Quote‑side swaps: 1000@ 1.25 = 1250, and 1000@ 1.5 = 1500.

• After compile: offer = 2000 BTC, ask = 2750 USDC.

15

Rujira Fin: Smart Contract Audit Report 13 February 2026

• With 5% fee: BOW receives 1900 BTC but must return ≥ 2750 USDC.

• At the original weighted rate of 1.375, 1900 input yields ~2612 USDC < 2750. BOW reverts.

• The test comment reads “with a correct min return”, indicating the developer believed this behavior was
intended.

The test only asserts message construction (passes), but in on‑chain execution the BOW min_return enforcement
causes the transaction to revert. The reduced input cannot satisfy the original min_returnbecause theMMquoted
price was already the best rate BOW can offer for that swap size.

Impact:

When fee_amm > 0 (the expected production configuration, typically Decimal::permille(5) / 0.5%), every swap
routed through market makers reverts. This disables the entire BOW liquidity layer — one of the three core liq‑
uidity sources— severely degrading orderbook depth and execution quality. All user swaps, arb operations, order
placements, and range operations that trigger market maker fills will fail.

Remediation:

Adjust min_return proportionally to the fee deducted from the offer:

1 let ask = coin(
2 ask.amount.sub(ask.amount.multiply_ratio(fee.numerator(), fee.denominator())).u128(),
3 ask.denom,
4);

Discussion:

Developer:

Hey, we’ve taken care of the issue with the FailSafe Admin. It’s all mitigated now and we’ve acknowledged it
on our end. Let us know if there’s anything more you need from us on this.

Auditor:

Great to hear you’ve mitigated the issue with the FailSafe Admin. We’ll review the changes on our end and
follow up if we need anything else from you. Thanks for addressing it so promptly.

16

Rujira Fin: Smart Contract Audit Report 13 February 2026

Finding 4: bid_pool::distribute_full Consumed‑Offer Exceeds Passed Offer — Swapper Underflow
DoS

Severity: Medium

Status: Resolved

Description:

bid_pool::Pool::distribute uses a +1 tolerance check to decide whether to fully consume the pool via
distribute_full. The full‑consumption path recomputes consumed_offer from total / rate rather than cap‑
ping it at the caller’s original offer, which can yield a consumed_offer greater than the offer that was passed in.
The Swapper thenexecutes self.remaining_offer -= offerwith the inflated value, underflowinga Uint128and
panicking. This is reachable during execute_swap against thinly‑filled order tick pools at fractional rates, causing
per‑transaction reverts for affected users.

Note: the automatic arbitrage (Arb) path is not affected because it calls SwapItem::swap directly (not through
Swapper) and guards profit checks with checked_sub, handling inflated values gracefully. Therefore this bug can‑
not cause a persistent market‑wide DoS.

Root cause

In packages/rujira-rs/src/bid_pool/pool.rs, distribute:

1 pub fn distribute(
2 &mut self,
3 offer: Uint256,
4 rate: &Decimal256,
5) -> Result<DistributionResult, BidPoolError> {
6 // ...
7 let bids_value = offer.mul_floor(*rate);
8 // +1 tolerance check:
9 if bids_value + Uint256::one() >= self.total {

10 return self.distribute_full(rate); // <-- ignores `offer`
11 }
12 self.distribute_partial(bids_value, offer)
13 }

When bids_value is exactly 1 unit short of self.total (which commonly happens due to integer truncation of
offer * rate), the +1 check passes and distribute_full is called. But distribute_full does not receive the
original offer:

1 fn distribute_full(&mut self, rate: &Decimal256) -> Result<DistributionResult, BidPoolError> {
2 let consumed_offer = self
3 .total
4 .multiply_ratio(rate.denominator(), rate.numerator());
5 // ...
6 Ok(DistributionResult {
7 consumed_offer, // <-- can exceed original offer
8 consumed_bids: self.total,
9 snapshots,

10 })
11 }

17

Rujira Fin: Smart Contract Audit Report 13 February 2026

consumed_offer = total / rate. Because totalwas compared against bids_value + 1 (not bids_value), the
back‑calculation can produce a value larger than the caller’s offer.

Flow to panic

1. Pool::swap (at contracts/rujira-fin/src/order_pool/pool.rs) calls self.pool.distribute(offer.
into(), &rate) and returns res.consumed_offer as the offer amount consumed.

2. Swapper::swap (at packages/rujira-rs/src/exchange/swapper.rs) does:

1 self.remaining_offer -= offer; // Uint128 subtraction panics on underflow

If offer > remaining_offer, this panics.

Why the Arb path is safe

The Arbmechanism uses a separate code path from Swapper. In Arbitrage::arbitrage (at packages/rujira-rs
/src/exchange/arb.rs), the arber calls SwapItem::swap directly on RootItem (a nested EitherOrBoth<..> struc‑
ture). The EitherOrBoth::swap implementation only adds consumed offers from sub‑items — it never subtracts
consumed_offer from the input amount. The inflated value simply propagates upward to the profit check:

1 match (b.1.checked_sub(a.0), a.1.checked_sub(b.0)) {
2 (Ok(a), Ok(b)) => { /* commit profitable arb */ }
3 _ => Ok(None), // graceful exit, no panic, no state commit
4 }

The checked_sub catches any overflow and returns Ok(None), causing Arber::run to break. No panic occurs and
no state is committed.

Concrete example

Parameter Value

pool.total 10

rate 0.1 (= numerator 10^17, denominator 10^18)

Swapper remaining_offer 99

bids_value = 99 * 0.1 9 (truncated)

bids_value + 1 = 10 >= 10 true → routes to distribute_full

consumed_offer = 10 / 0.1 100

remaining_offer - consumed_offer 99 - 100 → underflow panic

18

Rujira Fin: Smart Contract Audit Report 13 February 2026

In this scenario, the pool contains 10 units at rate 0.1. A swap with 99 offer arrives. The integer‑truncated
bids_value of 9 plus the +1 tolerance equals total, so distribute_full fires. It back‑computes consumed_offer
= 100, exceeding the actual offer of 99, and the Swapper panics.

The overflow window for a given rate and total is approximately 1/rate - 1 values wide. For rate = 0.1,
total = 10, any offer in [90, 99] triggers the bug. For rate = 0.01, total = 1, the window is ~99 values

wide.

Trigger conditions

This is reachable whenever:

1. A limit‑order pool has a small total at a fractional rate (common for low‑liquidity ticks)

2. A swap offer slightly undershoots the pool’s back‑computed offer requirement

3. The +1 tolerance bridges the gap, routing to distribute_full

Affected code paths

Entry Point SwapRequest Type Affected?

execute_swap Yolo / Min / Exact Yes—no in‑loop price guard,
unconditional panic

execute_swap Limit Sometimes— the limit price check
may break before the underflow if
the achieved price exceeds the limit

execute_new_order Limit (auto‑set to order price) Conditional— the limit check may
protect

QueryMsg::Simulate Yolo Yes—query fails (no state change)

ExecuteMsg::Arb N/A (uses SwapItem::swap directly) No— checked_sub handles
gracefully

Impact:

• Per‑swap DoS: Individual execute_swap transactions (Yolo/Min/Exact) that exhaust better liquidity and
reach the affected pool will panic and revert. No funds are lost (transaction reverts cleanly).

• Griefing vector: An attacker can create a limit order at a carefully selected fractional price with a small
amount. Any user swap large enough to reach that tick in the book will revert. The attacker’s pool sits deep
in the book (low rate), so only swaps exhausting all better liquidity are affected.

19

Rujira Fin: Smart Contract Audit Report 13 February 2026

• No market‑wide DoS: The automatic arbitrage mechanism is unaffected because it uses checked_sub for
profit validation. All Swap, Order, and Range operations that don’t hit the poisoned pool through Swapper
continue to function normally.

• Query impact: Simulate queries for large offers covering the affected tick will also fail.

Remediation:

Cap the consumed_offer returned by distribute_full to the original offer value. The simplest fix is to thread
offer into distribute_full:

1 fn distribute_full(
2 &mut self,
3 offer: Uint256,
4 rate: &Decimal256,
5) -> Result<DistributionResult, BidPoolError> {
6 let consumed_offer = self
7 .total
8 .multiply_ratio(rate.denominator(), rate.numerator())
9 .min(offer); // <-- cap at original offer

10 // ...
11 }

Discussion:

Developer:

Hey, we went ahead and fixed the issue you pointed out. You can check out the details of what we did at this
link: https://gitlab.com/thorchain/rujira/‑/commit/970b137861042cbb9477610d7918ea1a7e013eb1. Let us
know if everything looks good on your end!

Fix URL: https://gitlab.com/thorchain/rujira/‑/commit/970b137861042cbb9477610d7918ea1a7e013eb1

Auditor:

Great to hear you’ve addressed the issue! We’ll take a look at the changes you’ve made in that commit and
get back to you if there’s anything else. Thanks for getting on top of this so quickly!

20

https://gitlab.com/thorchain/rujira/-/commit/970b137861042cbb9477610d7918ea1a7e013eb1
https://gitlab.com/thorchain/rujira/-/commit/970b137861042cbb9477610d7918ea1a7e013eb1

Rujira Fin: Smart Contract Audit Report 13 February 2026

Finding 5: LP sandwich on RangeMsg::Create due to lack of slippage control

Severity: Medium

Status: Resolved

Description:

RangeMsg::Create balances deposits using Range::mid_price() derived from existing ranges (not the order‑
book). Attackers can front‑runwith dust ranges to skew themid‑price and force a victim’s deposit split, then trade
against the newly created range.

Impact:

Victims can receive an adverse base/quote composition and suffer MEV losses when attackers trade against the
skewed range.

Remediation:

Addmin‑amount or price‑bound parameters to RangeMsg::Create.

Discussion:

Developer:

Hey, we’ve added a safety check for the UI on the FailSafe Admin. Whilewe think that the chance ofmalicious
front‑running is pretty low, it’s still a good idea to have this extra layer of protection in place. You can check
out the changes wemade here: https://gitlab.com/thorchain/rujira/‑/commit/0475cf1df0bab03a8e9e9ff2f0
77261611dd2a1f.

Fix URL: https://gitlab.com/thorchain/rujira/‑/commit/0475cf1df0bab03a8e9e9ff2f077261611dd2a1f

Auditor:

So, we’ve reviewed the changes made to the FailSafe Admin, and it’s looking good. Adding that safety check
for the UI was definitely a smart move, even if the risk of front‑running isn’t super high. It’s always better to
be safe than sorry, right? Everything seems to be in order with the latest commit.

21

https://gitlab.com/thorchain/rujira/-/commit/0475cf1df0bab03a8e9e9ff2f077261611dd2a1f
https://gitlab.com/thorchain/rujira/-/commit/0475cf1df0bab03a8e9e9ff2f077261611dd2a1f
https://gitlab.com/thorchain/rujira/-/commit/0475cf1df0bab03a8e9e9ff2f077261611dd2a1f

Rujira Fin: Smart Contract Audit Report 13 February 2026

Finding 6: MarketMaker Netting Underflow Causes DoS

Severity: Medium

Status: Resolved

Description:

MarketMakerContext::compile can underflow when netting opposite‑direction entries for the same market
maker, causing a panic and reverting the entire Arb execution.

• Netting logic in contracts/rujira‑fin/src/market_maker/context.rs subtracts ask_coin.amount and
offer_coin.amountwhen directions oppose.

• If opposite‑direction entries have mismatched ratios (common when prices differ), a.amount -= ask_coin
.amount (or the inverse) can underflow Uint128, panicking.

• This can occur when Arb consumes both sides from the samemarket maker in a single run, or when a mali‑
cious market maker returns skewed quotes.

Impact:

Panics during Arb execution revert swaps, ordermanagement, and range operations (all are wrapped in Arb). This
enables a denial of service under adversarial or volatile conditions.

Remediation:

Use checked arithmetic and net by value in a single currency before converting, or enforce invariants that guaran‑
tee no underflow when offsetting opposite‑direction entries.

Discussion:

Developer:

We’ve looked into the issue with themarket makers, and honestly, we think it’s unlikely to cause any trouble
since we have complete control over them. But just to be on the safe side and prevent any panics, we’ve
added some additional checks. You can check out the changes wemade here: commit link.

Fix URL: https://gitlab.com/thorchain/rujira/‑/commit/061c342f1cbc9a89320937254bd4d8c696f9357d

22

https://gitlab.com/thorchain/rujira/-/commit/061c342f1cbc9a89320937254bd4d8c696f9357d
https://gitlab.com/thorchain/rujira/-/commit/061c342f1cbc9a89320937254bd4d8c696f9357d

Rujira Fin: Smart Contract Audit Report 13 February 2026

Auditor:

We appreciate the proactive steps you’ve taken to add those checks, even though the risk seemed low due
to your control over the market makers. It’s good to see you’re prioritizing stability and peace of mind. We’ll
review the updates to ensure everything’s solid.

23

Rujira Fin: Smart Contract Audit Report 13 February 2026

Finding 7: Tick Change Strands Fixed‑Price Orders, Locking User Funds

Severity: Medium

Status: Resolved

Description:

When governance changes the tick size via SudoMsg::UpdateConfig or migrate, existing Fixed‑price orders at
prices valid for the old tick but invalid for the new tick become permanently inaccessible. The order owner can‑
not withdraw filled amounts, retract remaining bids, or resize the order — yet the order continues to be filled by
incoming swaps and arbs, accumulating unretrievable proceeds.

Root cause: OrderManager::execute_orders() validates every Fixed price against the current tick before any
operation, including withdrawal/retract of existing orders.

In contracts/rujira‑fin/src/order_pool/order_manager.rs:

1 for (side, price, target) in o {
2 if let Price::Fixed(x) = price {
3 self.config.tick.validate_price(&x)?;
4 }
5 let mut pool = Pool::load(storage, &price, &side, oracle);
6 match pool.load_order(storage, &self.owner) {
7 Ok(mut order) => {
8 self.execute_existing_order(storage, &mut pool, &mut order, &side, target)?
9 }

10 // ...
11 }
12 }

The tick gate fires before Pool::load and load_order, preventing all downstream operations. There is no alterna‑
tive code path to interact with orders outside execute_orders.

Tick change entry points— governance can change the tick via:

1. SudoMsg::UpdateConfig in contracts/rujira‑fin/src/contract.rs:

1 config.update(deps.api, &update)?; // may change tick
2 config.validate(deps.as_ref())?;
3 config.save(deps.storage)?;

2. migrate in contracts/rujira‑fin/src/contract.rs:

1 config.update(deps.api, &msg)?; // may change tick

Neither migrates existing orders to the new tick.

The stranded orders keep filling. Pool::iter() in contracts/rujira‑fin/src/order_pool/pool.rs iterates POOLS by
storage prefix without any tick validation:

24

Rujira Fin: Smart Contract Audit Report 13 February 2026

1 let fixed = POOLS
2 .prefix((side.clone(), PoolType::Fixed))
3 .range(storage, None, None, order)
4 .filter_map(populate);

This means SwapIter::iter(), used by swaps and arbs, includes stranded orders. Incoming trades fill these or‑
ders, converting bid tokens into fill proceeds. The BidPool::distributemechanism credits filled amounts to
the order’s Bid, but the owner can never call maybe_withdraw → claim_order to retrieve them.

Queries still work. query_order and query_orders in contracts/rujira‑fin/src/order_pool/query.rs load orders
directly viaPool::load→load_orderwithout tick validation. Theuser cansee their strandedorderand its growing
filled balance, but cannot interact with it.

Example scenario:

1. Contract deployed with Tick(4). User places a Side::Quote order at Price::Fixed(1.234) — valid for 4
significant figures.

2. Governance changes tick to Tick(2) via SudoMsg::UpdateConfig.

3. Tick(2).validate_price(&1.234) fails — 1.234 truncated to 2 sig figs is 1.2 != 1.234.

4. User attempts Order([(Side::Quote, Price::Fixed(1.234), None)]) to withdraw fills → reverts at tick
validation.

5. User attempts Order([(Side::Quote, Price::Fixed(1.234), Some(0))]) to fully retract → reverts at tick
validation.

6. Meanwhile, swaps continue filling the order at price 1.234, converting user’s quote tokens to base proceeds
that accumulate unretrievably.

Impact:

Permanent fund lockup for all users with Fixed‑price orders at prices incompatible with the new tick. The severity
scales with:

• The magnitude of the tick change (e.g., Tick(6) → Tick(2) strands many more prices than Tick(4) → Tick
(3))

• The total value locked in affected price levels

• The continued filling of stranded orders wastes the user’s bid tokens while accumulating unretrievable pro‑
ceeds

Oracle‑priced orders (Price::Oracle) are unaffected since they bypass the tick validation entirely.

Remediation:

Skip tick validation when the user’s intent is withdrawal/retract only. Add a dedicated code path or guard:

25

Rujira Fin: Smart Contract Audit Report 13 February 2026

1 for (side, price, target) in o {
2 let is_retract_or_withdraw = target.map_or(true, |t| t.is_zero());
3 if let Price::Fixed(x) = price {
4 if !is_retract_or_withdraw {
5 self.config.tick.validate_price(&x)?;
6 }
7 }
8 // ...
9 }

Discussion:

Developer:

Hey, just wanted to let you know we’ve already taken care of the issue you flagged with the FailSafe Admin.
You can check out the fix we implemented in the latest commit here: https://gitlab.com/thorchain/rujira/‑
/commit/86f779bc4643c9abbe1b0774ebb9d1ddc76e18fd. Let us know if there’s anything else!

Fix URL: https://gitlab.com/thorchain/rujira/‑/commit/86f779bc4643c9abbe1b0774ebb9d1ddc76e18fd

Auditor:

Thanks for the quick update! We saw that you addressed the issue with the FailSafe Admin. We’ll review
your latest commit to ensure everything’s in order. If we spot anything else, we’ll reach out. Appreciate your
prompt action on this!

26

https://gitlab.com/thorchain/rujira/-/commit/86f779bc4643c9abbe1b0774ebb9d1ddc76e18fd
https://gitlab.com/thorchain/rujira/-/commit/86f779bc4643c9abbe1b0774ebb9d1ddc76e18fd
https://gitlab.com/thorchain/rujira/-/commit/86f779bc4643c9abbe1b0774ebb9d1ddc76e18fd

Rujira Fin: Smart Contract Audit Report 13 February 2026

Finding 8: Unbounded Orderbook Iteration Can Cause DoS

Severity: Medium

Status: Acknowledged

Description:

SwapItermerges pools, ranges, and market makers into a single iterator that is consumed during swap and arb
execution. There are no minimum deposit sizes or limits on the number of price levels/ranges, so an attacker can
create many dust positions and force long iterations that risk out‑of‑gas failures.

• The swap path iterates the merged sources in contracts/rujira‑fin/src/swap_iter.rs.

• Swapper::swap consumes this iterator in a for loop until the offer is fully consumed or a limit breaks in
packages/rujira‑rs/src/exchange/swapper.rs.

• Range creation only enforces non‑empty funds, with no minimum size in contracts/rujira‑
fin/src/ranges/execute.rs.

• Order creation uses the provided target amount with no minimum size checks in contracts/rujira‑
fin/src/order_pool/order_manager.rs.

• This allows an attacker to create a large number of dust pools/ranges across many price levels, inflating the
iterator length and swap execution cost.

Impact:

Swaps and arbs may exceed gas limits when the orderbook is flooded with many small pools/ranges, resulting in
a denial of service for normal users. The impact depends on the attacker’s willingness to lock funds but can still
materially degrademarket availability.

Remediation:

• Enforce minimum order and range sizes.

• Limit the number of active price levels or ranges per user and/or globally.

• Prune dust positions and consider expirations for inactive entries.

• Consider gas‑bounded execution strategies that limit iteration per call.

Discussion:

27

Rujira Fin: Smart Contract Audit Report 13 February 2026

Developer:

Hey, so we’ve been aware of this potential vector sincewe first rolled out fin back inmid‑2022. It hasn’t really
caused any issues for us since then, so we’ve acknowledged and accepted it as part of our system.

Auditor:

We noticed that the developers are aware of this vector and have accepted it since the initial release of fin in
mid‑2022. It seems like it hasn’t posed any problems so far, but we’ll keep it on our radar to ensure it stays
that way.

28

Rujira Fin: Smart Contract Audit Report 13 February 2026

Finding 9: Recursive RangeOfferIter Can DoSwith Many Empty Ranges

Severity: Low

Status: Acknowledged

Description:

RangeOfferIter::next() uses recursion when an offer slice has zero liquidity. If many ranges have zero liquidity,
the recursion depth can grow large, risking stack overflow or excessive gas usage.

• Range::withdraw can reduce base/quote to zero but does not remove the range from storage.

• RangeOfferIter::next() calls itself recursively when offer.total.is_zero().

• With a largenumberof empty ranges, the iterator can recursemany timesbefore findingnon‑empty liquidity,
leading to deep call stacks and wasted gas.

• Each empty range still required a non‑zero initial deposit (potentially dust) before withdrawing 100% to
reach zero liquidity.

Impact:

Excessive recursion can waste gas and, in extreme cases with many empty ranges, cause swap execution to fail. It
does not inherently freeze the market but can degrade reliability under adversarial spam.

Remediation:

Replace recursion with an explicit loop and consider pruning ranges with zero liquidity from storage to keep the
iterator bounded.

Discussion:

Developer:

Hey, so we tackled the issue with the storage ranges. Instead of pruning them, which might cause problems
since they can be empty in just one direction, we decided to move the secondary index out of the way. This
way, those pesky empty ranges won’t mess with the iterator. If you’re curious about the fix, you can check it
out here: https://gitlab.com/thorchain/rujira/‑/blob/fin/v1.2/contracts/rujira‑fin/src/ranges/range.rs?reft
ype=heads#L98.

Fix URL: https://gitlab.com/thorchain/rujira/‑/blob/fin/v1.2/contracts/rujira‑fin/src/ranges/range.rs?reftyp
e=heads#L98

29

https://gitlab.com/thorchain/rujira/-/blob/fin/v1.2/contracts/rujira-fin/src/ranges/range.rs?reftype=heads#L98
https://gitlab.com/thorchain/rujira/-/blob/fin/v1.2/contracts/rujira-fin/src/ranges/range.rs?reftype=heads#L98
https://gitlab.com/thorchain/rujira/-/blob/fin/v1.2/contracts/rujira-fin/src/ranges/range.rs?reftype=heads#L98
https://gitlab.com/thorchain/rujira/-/blob/fin/v1.2/contracts/rujira-fin/src/ranges/range.rs?reftype=heads#L98

Rujira Fin: Smart Contract Audit Report 13 February 2026

Auditor:

We took a look at the developer’s approach to handling the storage ranges issue. Their solution to move the
secondary index rather thanpruning the ranges seems likea smartmove. It prevents anypotential issueswith
empty ranges affecting the iterator. This approach should keep things running smoothly without unintended
side effects.

30

Rujira Fin: Smart Contract Audit Report 13 February 2026

Finding 10: Range Iterator Infinite LoopWhen range_delta == 0

Severity: Info

Status: Resolved

Description:

If range_delta is zero, RangeOfferIter fails to advance price steps and can recurse indefinitely during swap iter‑
ation, leading to a gas‑exhaustion DoS.

• range_delta is configurable and not validated in Config::validate.

• RangeOfferIter::candidates computes step = start * delta.

• With delta == 0, step == 0, so the next price candidate can remain equal to start.

• RangeOfferIter::next() builds a RangeOffer with start == end, yielding total == 0, and recursively
calls next() again without advancing state.

Impact:

Any swap or arb that touches range liquidity can loop until out‑of‑gas, causing a denial of service.

Remediation:

Enforce range_delta > 0 (and ideally a minimum tick‑safe value) in config validation and updates. Consider also
adding a guard in the iterator to prevent zero‑step progress.

Discussion:

Developer:

Hey, soweaddressed the issuewith theFailSafeAdminbyadding it toour config validation. Youcancheckout
the changes we made in this commit: 6f2a162687a180d3af903b499ba6790bc7322d04. This should handle
the problemwe identified.

Fix URL: https://gitlab.com/thorchain/rujira/‑/commit/6f2a162687a180d3af903b499ba6790bc7322d04

Auditor:

It looks like you guys tackled the FailSafe Admin issue by updating the config validation, which is great. We’ll

31

https://gitlab.com/thorchain/rujira/-/commit/6f2a162687a180d3af903b499ba6790bc7322d04

Rujira Fin: Smart Contract Audit Report 13 February 2026

take a look at the specific changes in the commit youmentioned to ensure everything’s alignedwith security
best practices. Thanks for the quick response on that!

32

Rujira Fin: Smart Contract Audit Report 13 February 2026

Disclaimer

This security report (“Report”) is provided by FailSafe (“Tester”) for the exclusive use of the client (“Client”). The
scope of this assessment is limited to the security testing services performed against the systems, applications,
or environments supplied by the Client. This Report is subject to the terms and conditions (including without
limitation, description of services, confidentiality, disclaimer, and limitation of liability) set forth in the Services
Agreement, or the scope of services, and terms and conditions provided to you (“Customer” or the “Company”) in
connection with the Agreement. This Report, provided in connection with the Services set forth in the Agreement,
shall be used by the Company only to the extent permitted under the terms and conditions set forth in the Agree‑
ment. This Report may not be transmitted, disclosed, referred to, or relied upon by any person for any purpose,
normay copies be delivered to any other person other than the Company, without FailSafe’s prior written consent
in each instance.

This Report is not, nor should it be considered, an “endorsement” or “disapproval” of any particular project, sys‑
tem, or team. This Report is not, nor should it be considered, an indication of the economics or value of any “prod‑
uct” or “asset” created by any team or project that contracts FailSafe to perform security testing. This Report
does not provide any warranty or guarantee regarding the absolute security or bug‑free nature of the technology
analyzed, nor does it provide any indication of the technology’s proprietors, business, business model, or legal
compliance.

ThisReport shouldnotbeused inanyway tomakedecisionsaround investmentor involvementwithanyparticular
project. This Report in no way provides investment advice, nor should it be leveraged as investment advice of any
sort. This Report represents anextensive testingprocess intended tohelpour customers identify potential security
weaknesses while reducing the risks associated with complex systems and emerging technologies.

Technology systems, applications, andcryptographicassetspresentahigh level of ongoing risk. FailSafe’sposition
is that each company and individual are responsible for their own due diligence and continuous security practices.
FailSafe’s goal is to help reduce attack vectors and the high level of variance associated with utilizing new and
evolving technologies, and in no way claims any guarantee of security or functionality of the systems we agree to
test.

The security testing services provided by FailSafe are subject to dependencies and are under continuing develop‑
ment. You agree that your access and/or use, including but not limited to any services, reports, andmaterials, will
be at your sole risk on an as‑is, where‑is, and as‑available basis. The testing process may include false positives,
false negatives, and other unpredictable results. The services may access and depend upon multiple layers of
third‑party technologies.

ALL SERVICES, THE LABELS, THE TESTING REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS
OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL FAULTS AND DE‑
FECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, FAIL‑
SAFE HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RE‑

33

Rujira Fin: Smart Contract Audit Report 13 February 2026

SPECT TO THE SERVICES, TESTING REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING, FAIL‑
SAFESPECIFICALLYDISCLAIMSALL IMPLIEDWARRANTIESOFMERCHANTABILITY, FITNESSFORAPARTICULARPUR‑
POSE, TITLE AND NON‑INFRINGEMENT, AND ALL WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR
TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, FAILSAFE MAKES NO WARRANTY OF ANY KIND THAT THE
SERVICES, THE LABELS, THE TESTING REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR
RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE
ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE
SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR‑FREE.

WITHOUT LIMITATION TO THE FOREGOING, FAILSAFE PROVIDES NO WARRANTY OR DISCLAIMER UNDERTAKING,
AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,
ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYS‑
TEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS
OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN ORWILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER FAILSAFE NOR ANY OF FAILSAFE’S AGENTSMAKES ANY REPRESEN‑
TATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR CURRENCY OF
ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. FAILSAFEWILL ASSUME NO LIABILITY OR RE‑
SPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT ANDMATERIALS OR FOR ANY LOSS
ORDAMAGEOF ANYKIND INCURREDAS A RESULTOF THEUSEOF ANY CONTENT, OR (II) ANY PERSONAL INJURYOR
PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO OR USE OF THE
SERVICES, TESTING REPORT, OR OTHER MATERIALS.

ALL THIRD‑PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION ORWARRANTY OF OR CONCERN‑
ING ANY THIRD‑PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD‑PARTY OWNER OR DISTRIB‑
UTOR OF THE THIRD‑PARTY MATERIALS.

THE SERVICES, TESTING REPORT, AND ANYOTHERMATERIALS HEREUNDER ARE SOLELY PROVIDED TOCUSTOMER
AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY IDENTIFIED IN
THIS AGREEMENT, NORMAY COPIES BE DELIVERED TO ANYOTHER PERSONWITHOUT FAILSAFE’S PRIORWRITTEN
CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENE‑
FICIARY OF SUCH SERVICES, TESTING REPORT, AND ANY ACCOMPANYING MATERIALS AND NO SUCH THIRD PARTY
SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST FAILSAFE WITH RESPECT TO SUCH SERVICES, TESTING RE‑
PORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF FAILSAFE CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE
BENEFITOFCUSTOMER. ACCORDINGLY, NOTHIRDPARTYORANYONEACTINGONBEHALFOFANYTHEREOF, SHALL
BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS ANDWARRANTIES AND NO SUCH THIRD
PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST FAILSAFE WITH RESPECT TO SUCH REPRESENTA‑
TIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREE‑
MENT OR OTHERWISE.

34

Rujira Fin: Smart Contract Audit Report 13 February 2026

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED TESTING REPORTS OR MATERIALS,
SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL, REGULATORY, OR OTHER
ADVICE.

35

	Executive Summary
	Project Details
	Structure & Organization of The Security Report

	Methodology
	In-scope

	Summary of Findings
	Finding 1: Oracle(-10000) Zero-Rate Pool Enables Direct Theft of Swap User Funds
	Finding 2: Unauthorized Range Transfer via Arb/DoRange Sender Spoofing
	Finding 3: MarketMaker commit() Fee Deduction Creates Impossible BOW min_return
	Finding 4: bid_pool::distribute_full Consumed-Offer Exceeds Passed Offer — Swapper Underflow DoS
	Finding 5: LP sandwich on RangeMsg::Create due to lack of slippage control
	Finding 6: MarketMaker Netting Underflow Causes DoS
	Finding 7: Tick Change Strands Fixed-Price Orders, Locking User Funds
	Finding 8: Unbounded Orderbook Iteration Can Cause DoS
	Finding 9: Recursive RangeOfferIter Can DoS with Many Empty Ranges
	Finding 10: Range Iterator Infinite Loop When range_delta == 0

	Disclaimer

